
exascaleproject.org

SC 19 Tutorial:
Getting Started with Containers on HPC

Shane Canon1, Sameer Shende2, Carlos Eduardo Arango3 , Andrew J. Younge4

1Lawrence Berkeley National Lab
scanon@lbl.gov

2University of Oregon
sameer@cs.uoregon.edu

3Sylabs Inc
eduardo@sylabs.io

4Sandia National Labs
ajyoung@sandia.gov

2

Outline

• 13:30 – 13:45 Introduction to Containers in HPC (Younge)
• 13:45 – 14:15 How to build your first Docker container (Canon)
• 14:15 – 14:45 How to deploy a container on a supercomputer (Canon)
• 14:45 – 15:00 Best Practices (Canon)
• 15:00 – 15:30 -- Break –
• 15:30 – 16:00 Running an HPC app on the E4S container (Shende)
• 16:00 - 16:30 How to build a Singularity container image (Arango)
• 16:30 - 16:50 Running Singularity on a supercomputer & adv features (Arango)
• 16:50 - 17:00 Success Stories & Summary (Canon)

Link: https://tinyurl.com/sc19tut

https://tinyurl.com/sc19tut

Introduction to
Containers in HPC

4

What are containers

• A lightweight collection of executable software that encapsulates everything
needed to run a single specific task
– Minus the OS kernel
– Based on Linux only

• Processes and all user-level software is isolated
• Creates a portable* software ecosystem
• Think chroot on steroids

• Docker most common tool today
– Available on all major platforms
– Widely used in industry
– Integrated container registry via Dockerhub

5

Hypervisors and Containers
• Type 1 hypervisors insert layer below host OS
• Type 2 hypervisors work as or within the host OS
• Containers do not abstract hardware, instead provide “enhanced chroot” to

create isolated environment
• Location of abstraction can have impact on performance
• All enable custom software stacks on existing hardware

5

6

Background

• Abstracting hardware and software resources has had profound impact on
computing

• Virtual Machines to Cloud computing in the past decade
– Early implementations limited by performance
– HPC on clouds: FutureGrid, Magellan, Chameleon Cloud, Hobbes, etc
– Some initial successes, but not always straightforward

• OS-level virtualization a bit different
– User level code packaged in container, can then be transported
– Single OS kernel shared across containers and provides isolation
– Cgroups traditionally multiplexes hardware resources
– Performance is good, but OS flexibility is limited

6

7

Containers in Cloud Industry

• Containers are used to create large-scale loosely coupled services
• Each container runs just 1 user process – “micro-services”

– 3 httpd containers, 2 DBs, 1 logger, etc

• Scaling achieved through load balancers and service provisioning
• Jam many containers on hosts for increased system utilization
• Helps with dev-ops issues

– Same software environment for developing and deploying
– Only images changes are pushed to production, not whole new image (CoW).
– Develop on laptop, push to production servers
– Interact with github similar to developer code bases
– Upload images to ”hub” or “repository” whereby they can just be pulled and provisioned

8

Containers

• Containers are gaining popularity for software management of distributed
systems

• Enable way for developers to specify software ecosystem
• US DOE High Performance Computing (HPC) resources need to support

emerging software stacks
– Applicable to DevOps problems seen with large HPC codes today
– Support new frameworks & cloud platform services

• But HPC systems are very dissimilar from cloud infrastructure
– MPI-based bulk synchronous parallel workloads are common
– Scale-out to thousands of nodes
– Performance is paramount

9

Container features in HPC

▪ BYOE - Bring-Your-Own-Environment
▪ Developers define the operating environment and system libraries in which their application runs.

▪ Composability
▪ Developers explicitly define how their software environment is composed of modular components as

container images,
▪ Enable reproducible environments that can potentially span different architectures.

▪ Portability
▪ Containers can be rebuilt, layered, or shared across multiple different computing systems
▪ Potentially from laptops to clouds to advanced supercomputing resources.

▪ Version Control Integration
▪ Containers integrate with revision control systems like Git
▪ Include not only build manifests but also with complete container images using container registries like

Docker Hub.

10

Container features not wanted in HPC
• Overhead

– HPC applications cannot incur significant overhead from containers

• Micro-Services
– Micro-services container methodology does not apply to HPC workloads
– 1 application per node with multiple processes or threads per container

• On-node Partitioning
– On-node partitioning with cgroups is not necessary (yet?)

• Root Operation
– Containers allow root-level access control to users
– In supercomputers this is unnecessary and a significant security risk for facilities

• Commodity Networking
– Containers and their network control mechanisms are built around commodity networking (TCP/IP)
– Supercomputers utilize custom interconnects w/ OS kernel bypass operations

11

HPC Containers
▪ Docker not good fit for running HPC workloads

▪ Security issues
▪ Can’t allow root on shared resources

▪ Lack of HPC architecture support
▪ No batch integration
▪ Assumes local resources
▪ Assumes commodity TCP/IP

▪ Many different container options in HPC
Shifter Singularity Charliecloud …

12

Developing Container Vision

▪ Support software dev and testing on laptops
▪ Working builds that then can run on supercomputers
▪ Dev time on supercomputers is expensive
▪ May also leverage VM/binary translation

▪ Let developers specify how to build the env AND app
▪ Import and run container on target platform
▪ Many containers, but can have different code “branches”
▪ Not bound to vendor and sysadmin software

▪ Focus on Interoperability
▪ Provide containerized services coupled with simulations
▪ Developing mechanisms to support services
▪ Performance matters

▪ Want to manage permutations of architectures and compilers
▪ Ensure container implementations on HPC are performant
▪ Keep features to support future complete workflows

13

Container DevOps

• Impractical for apps to use large-scale supercomputers for DevOps and/or
testing
– HPC resources have long batch queues
– Dev time commonly delayed as a result

• Create deployment portability with containers
– Develop Docker containers on your laptop or workstation
– Leverage Gitlab registry services

• Separate networks maintain separate registries
– Import to target deployment

• Leverage local resource manager

14

This tutorial will show you:

• How to build your first Docker container.
• How to run a Docker container on a supercomputer with Shifter.
• How to build your first Singularity container.
• How to run a container on a supercomputer with Singularity.

– And work with some Sylabs cloud features

• How to use the Extreme-scale Scientific Software Stack (E4S) container image.
– And a bit about Spack

• And maybe some best practices and lessons learned.

15

Tutorial Link

https://tinyurl.com/sc19tut

https://supercontainers.github.io/sc19-tutorial/

https://tinyurl.com/sc19tut
https://supercontainers.github.io/sc19-tutorial/

Tutorial Training Accounts

1. EC2 instance login
2. Cori training account

exascaleproject.org

Questions?

Next: learn how to work with your first container!

